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We study the diffusion of a polymer where we take into account self-avoidance. We introduce
a reptation model in which the diffusion of stored length is infinitely rapid. For this model, we
find that the diffusion coefficient scales with the length of the polymer as N2*~2, where v is the

self-avoiding walk exponent for N ranging over almost two orders of magnitude.

This result is

used to argue that for physical polymers the diffusion coefficient is proportional to N?*~2 when

self-avoidance is significant.

PACS number(s): 36.20.Ey, 83.20.Fk, 05.40.+j, 83.10.Nn

I. INTRODUCTION

Reptation as a means of describing the dynamics of
polymer is well established [1,2]. However, in the usual
approach the self-avoidance character of the polymer is
not taken into account. The argument used to justify
this approximation is that in many cases screening oc-
curs. In a polymer melt, the other polymers screen the
self-interaction so that even the radius of gyration expo-
nent is found to take the value v = 1/2, as for a nonin-
teracting polymer. In another situation, that of a single
polymer in a good solvent, hydrodynamic interactions
are important. Hydrodynamic interactions describe the
effect that a moving polymer drags along its surrounding
solute. In this article, we consider a single polymer diffus-
ing through a gel. For a rigid structure neither of the two
mechanisms described above is active and hence the self-
avoidance may be important. A gel is a random medium,
and this may influence the dynamics through entropic
trapping [3]. Here we consider the diffusion through a
periodic array of obstacles so that entropic trapping is
not important.

To be sure, the effect of self-avoidance on the diffusion
of a polymer has been considered before. In his seminal
article in which the concept of reptation was introduced,
de Gennes suggested that self-avoidance might change
the diffusion exponent [1]. Later a specific proposal to
this supposition was made by Lerman and Frisch [4]. The
critical issue is whether the renewal time is affected by the
self-interaction. Kremer and Binder suggested that the
Rouse time becomes larger [5] and scales with the length
of the polymer as N1*2¥, As a consequence, the renewal
time would scale as N272” and the diffusion exponent
would then have the value of the noninteracting polymer.

As yet the issue of whether self-avoidance changes the
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diffusion exponent is unresolved. Experiments are usu-
ally interpreted assuming that the diffusion exponent is
2, and deviations are ascribed to corrections to scaling
(see, e.g., [6]). As mentioned above, there are many ef-
fects that are important in an experiment so that the
influence of self-avoidance on the diffusion is hard to re-
solve. We are not aware of a simulation study in which
the diffusion exponent of a self-avoiding polymer was
systematically investigated. Most of the current stud-
ies are concerned with fairly short polymers, up to about
N = 100 [5]. Recently Barkema et al. [7] studied the
diffusion coefficient for a noninteracting polymer model
and found that there are very large corrections to scaling.
For N = 100, this correction is larger than 20%. Because
of these corrections to scaling, very long polymers have
to be simulated in order to obtain a reliable estimate of
the diffusion exponent. We present here a model with
which we have obtained reliable values of the diffusion
coefficients for polymers of lengths ranging from N = 50
to N = 3000. We find that for a reptating polymer in a
regular medium, self-avoidance substantially changes the
diffusion exponent.

II. FAST EXTRON MODEL

We study a simplified model of reptation, which com-
bines the two basic ingredients of reptation. In the rep-
tation model, the shape of the polymer can change only
due to the motion of the end groups. In addition, the
polymer is assumed to be not completely elongated, and
it contains some stored length. This stored length dif-
fuses along the polymer. When an excess of stored length
arrives at an end group, the polymer can grow. In the re-
verse situation when there is a shortage of stored length,
the polymer shrinks. We consider here a simple model
that contains these two ingredients in a pure form (Fig.
1). The polymer moves on a square lattice, and it is as-
sumed to consist of beads of polymer that we will call
reptons. These reptons can hop into neighboring cells
following the path of the polymer. These internal hops
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FIG. 1. The model of Rubinstein [8] as modified by Duke
[9]. The circles denote subunits of the polymer, called rep-
tons. The lines represent the segments of the polymer, which
determine the shape of the polymer. The possible moves of
the reptons are indicated by arrows. Internal moves can take
place only in those cells in which there are more than one rep-
ton, or equivalently, when there are extra reptons (extrons)
in a cell. The end points (solid circles) can make the moves
indicated by the dashed arrows. For this specific distribu-
tion of extrons, the lower end point can only move back and
shorten the chain as there is no extron in this cell. The upper
end point has one extron, and the only external moves it can
make is to grow. Whether an end group is allowed to grow or
shrink is determined by the presence or absence of an extron
in the cell. Due to the self-avoidance, the polymer is allowed
to grow only in two directions in this specific configuration.
In the extron equilibrium model, the chain is fully character-
ized by the total number of reptons N (in this figure NV = 11),
the length of the chain L (here L = 8), and the shape of the
polymer. The number of extronsis M = N —L —1=2.

can only take place if there are at least two reptons in a
given cell. The excess of reptons in a cell we call extrons
(extra reptons). The end group can shrink if there is no
extron in the end cell. Conversely, the polymer can grow
if there is at least one extron in the last cell. The rules
are made clear in Fig. 1. The growing of new segments
can take place only into empty cells, thus incorporating
self-avoidance in the model. This model is the zero field
case of a self-avoiding version of a model introduced by
Rubinstein [8] and modified by Duke [9]. We denote it
as the (self-avoiding) repton model [(SA)RM].

For reasons that will be made clear below, we will
actually simulate a different version, in which the ex-
trons move very rapidly compared to the end groups.
This model, which we studied before for the non-self-
avoiding case [10], we call the self-avoiding fast extron
model (SAFEM). In the SARM, for any configuration,
each end group can either grow or shrink, depending on
the extron distribution. In the SAFEM, the extrons dif-
fuse very rapidly, and after each move of the end groups
they instantaneously attain the equilibrium distribution,
which has a constant extron density. In the SAFEM, the
dynamics of the extrons need not be treated explicitly.
The dynamics are carried entirely by the end groups and
the extrons affect the dynamics only through probabili-
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ties according to which end group may grow or shrink.
We consider a model of N reptons. For a specific poly-
mer configuration with length L there are M = N—-L—-1
extrons. Considering the model in which an arbitrary
number of extrons is allowed in each cell, the extrons
obey Bose statistics. The probability © of finding at
least one extron in the last cell is a simple exercise in
equilibrium statistical physics. The number of distinct
ways to put M bosons into L + 1 cells is identical to the
number of ways in which L separations can be inserted
into a line containing L+ M +1 = N beads. This number

18
N -1
2= o

The probability of finding no extrons in a specific cell is
Z((f) 1)M/Z§’§} and therefore

N -2
ezp(nL>0)=1—Ef];11§=NAi1, (2)

where L denotes the last cell occupied by the polymer.
As there is no external field, the probability © is identical
for all the cells. The rates with which the polymer shrinks
out of a given configuration is

W, =W(1- ), (3)

where W is the number of shrinks per unit time for a
fully stretched polymer. This rate is identical for both
ends of the polymer. The growth rate is

W, = We, (4)

for each of the allowed direction. The total growth rate
is nW®, where n is the number of unoccupied neighbor-
ing cells of the two ends. In equilibrium the shrink rate
equals the growth rate
1-(9)
(n) = —gy > (5)
(®)

where the angular brackets denote the equilibrium av-
erage. As fluctuations in the length, and hence © are
small, these fluctuations can be ignored. In the Monte
Carlo simulations the possible moves are enumerated,
and one of the moves is selected with relative weights pro-
portional to the rates mentioned. The dynamics of the
model studied here are ergodic, which means that start-
ing from any configuration and waiting long enough, any
state is reached with the proper weight. To see this, note
that any configuration has a set of legitimate moves to-
wards a configuration of length zero, i.e., all the reptons
in one cell. This is an important feature not shared by
all methods; for instance, the so-called “slithering snake”
algorithm is not ergodic [11]. The boson model studied
here can easily be extended by slightly changing the rules.
If one allows only one extron in each cell, Fermi statistics
are obeyed and the probability of finding one extron in a
specific cell is found to be
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FIG. 2. A configuration that may have a renewal time that
is substantially larger than average. The empty circles n
denote cells with many extrons, and the only cell without
extrons is the cell marked by the cross. In order for the poly-
mer to come out of a configuration such as this, two subse-
quent shrinks have to occur, which is unlikely due to the large
number of extrons. The simulation results suggest that con-
figurations such as these are rare and not important for the
diffusion of the polymer. For extrons obeying Fermi statis-
tics, two subsequent shrinks are impossible and the polymer
is stuck in this configuration.

M
L+1

The self-avoiding repton model with Fermi statistics will
have somewhat different properties, for instance, it is
nonergodic (see Fig. 2). As far as the main research ques-
tion of this paper is concerned, the value of the diffusion
exponent for the self-avoiding repton model, the extron
statistic is expected to be unimportant. All our simula-
tions are for the Bose model.

8Fermi = (M < L+ 1)- (6)

III. EQUILIBRIUM PROPERTIES

The models introduced, the SARM and SAFEM have
the same equilibrium distribution, in which all configu-
rations are equally likely. However, in the SAFEM, the
extron distribution is not an interesting quantity as it is
always in a (homogeneous) equilibrium. A special fea-
ture of these models over other self-avoiding walk models
is that the length fluctuates. We now establish the prob-
ability distribution for finding a polymer with length L.
The number of self-avoiding walk (SAW) configurations
with length L is asymptotically [12,13]

z%) = Kt 1, (7)
where K is a constant, v = 43/32 in two dimensions,
and ¢ = 2.63815--. for a two-dimensional square lat-

tice. The number of distinct partitions of M bosons dis-

tributed over L + 1 sites is Z}fv}, so the total number of
configurations of length L is

S) (B
7 =77 2y (8)
For large number of reptons N = L + M + 1 this is a
Gaussian distribution. The average length is

(o4

(L) =1

N =1IN. (9)

This average length is observed in simulations and it
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FIG. 3. The average end-to-end distance <R2> as a func-
tion of the number of reptons N in the two-dimensional fast
extron model (circles). The solid line is a N/ line, which is
based on the known value of the self-avoiding walk exponent
v = 3/4. The pluses are the average length of the polymer,
which coincides with the dashed line which is the prediction
of Eq. (9), L =0.72513N.

serves as a check on the simulation method (Fig. 3). Note
that the length does not depend on the exponent . Fluc-
tuations in the length are

<L2 _ (L)2> -4 f__c)zN, (10)

so these are indeed small for long polymers. However,
length fluctuations can give rise to corrections to scaling.
Throughout this paper we will be interested only in the
behavior of long polymers and we will ignore finite size
corrections to the scaling behavior. For fermions we find

L+1
2P = ("5t (1)

and as a consequence

(L) = % {1 + (1 < c)l/z] N. (12)

The mean end-to-end distance R is defined as R? =
R?), where R is the end-to-end vector. For an un-

branched polymer R is proportional to the radius of gy-
ration [2]. It is well known that R oc L with v the SAW
exponent. In two dimensions v = 3/4, whereas in three
dimensions » = 0.586 [12-14]. This exponent is repro-
duced in the simulations of the SAFEM, see Fig. 3. The
present simulation scheme is not the most efficient algo-
rithm for finding the self-avoiding walk exponents, more
efficient algorithms exist [14].

IV. DYNAMIC PROPERTIES

The scaling behavior of the diffusion coefficient was
first established by de Gennes [1]. We use here the line



2804

of thought expressed by Barkema, Marko, and Widom
[7]. The diffusion constant is given by

_ ([AR®)]?)

D= tl—ggo C2dt (13)
where d is the dimension and AR is the displacement
of the center-of-mass after time ¢. For a noninteracting
polymer there will be no dynamic correlations after all
the segments of the polymer have been renewed. So the
diffusion coefficient is given by

RZ

= 2din’ (14)
where R is the average end-to-end distance and tg is
the renewal time. To find the renewal time, we con-
sider the curvilinear displacement. For the repton model
(RM), the curvilinear displacement AC is increased by
an amount 1/N each time a repton jumps to the right,
whereas it is decreased by an amount 1/N each time
a repton jumps to the left. Left and right are defined
with respect to the repton index, one end, say ¢ = 1
corresponding to the left and the other end, i = N cor-

" responding to the right. In order to really replace one
segment, N reptons have to hop in the same direction,
hence the factors 1/N. In the absence of an external
field, subsequent jumps are uncorrelated on the average
and the time dependence of the curvilinear displacement
follows a random walk so

(AC)?) = 2D.t, (15)
(@)

with D, the curvilinear diffusion coefficient. This curvi-
linear diffusion coefficient is given by the number of
jumps per unit time times the square curvilinear displace-
ment per jump, which is 1/N2. For bosons, the number
of jumps per unit time is {(1 — {)NW for large polymers
[15,16] so

_ia-y
D, = ———W. (16)

In order for the polymer to completely renew itself, the
curvilinear mean square displacement has to be L?, and
the renewal time becomes

I2N? l N3
tp=—m = —mm— ——. 17
BE=%9D. 200 W (17)
Hence the renewal time scales as N3, as is well known

[1,2].

For the FEM a different power law is obtained. In the
FEM only the two end reptons move. In equilibrium the
growth rate equals the shrink rate Eq. (3) and we find
that the curvilinear diffusion coefficient is

AW (1 - ©)

D, =
4

(18)
where the numerator is the rate of moves of the end
groups and the denominator expresses that after one
move the center-of-mass coordinate along the polymer is
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shifted over half a segment. As on the average ® = 1—1,
D, =1IW. (19)
For the FEM we find the renewal time

1 N?
tp = ——. 20
R= i (20)
Here we notice an important difference between the RM
and the FEM: the renewal time depends on a different
power of N.
For a noninteracting polymer, the average end-to-end
distance is R = aL'/? and the diffusion coefficient is
a’L Wa?

b= =0 Dan

(21)
for the repton model. In one dimension D = Wa2?/3N?2,
which was first found by Van Leeuwen and Kooiman [15],
and confirmed in computer simulations of Barkema et al.
[7]. For the fast extron model

_ Wa?

D N

(22)

which is identical to our previous results [10]. Both ex-
pressions have the form

Wa?

D:CNu,

(23)

for some constant C and diffusion scaling exponent pu.

So far in the section we have discussed the noninter-
acting polymer. The interacting case has been studied to
some extent before. Lerman and Frisch [4] proposed to
use Eq. (14) with tp having the scaling exponent 3, as in
Eq. (17). This results in

— Rz 2v—3
- 2dtg ’

(24)

so 4 = 3 — 2v. This argument was put into question
by Kremer and Binder [5] who argued that the Rouse
time t,, and consequently also the renewal time scales as
tr o« N2v*2 resulting in p = 2, i.e., the noninteracting
exponent. As yet the issue has not been resolved. There
is little hope that a simple theoretical argument can re-
solve the issue. As is illustrated in Fig. 2, one can easily
find configurations that have renewal times substantially
larger than average. The question is whether such con-
figurations are important.

V. SIMULATION RESULTS

We performed simulation on the SAFEM. The use of
the SAFEM enables us to obtain the values for the diffu-
sion exponent accurately. For the RM, the renewal time
scales as N3, Eq. (17). However, during one time unit N
reptons hop so that the amount of computational effort
required for one polymer renewal scales as N*. Hence,
the largest systems studied for the repton model has
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FIG. 4. The dimensionless diffusion coefficient D as a func-
tion of the number of reptons N in the two-dimensional
SAFEM. In all the figures, dimensionless units are used in
which W = a = 1. The solid line is a N~!/2 curve and the
dashed line is the N~ ! curve. It is clear that D ox N2¥~2 gives
a good prediction. The errors in the diffusion coefficients are
of the order of 5%, which is about the size of the plotting
symbols.

N = 400, and seems unlikely that substantially larger
systems can be studied. N = 400 seems to be too small
to resolve issues concerning scaling behavior. This is even
more so as it is known that there are large corrections to
scaling in the diffusion coefficient of the repton model [7].

The case is much better for the SAFEM. As only the
end points move, the amount of work required for a sin-
gle renewal scales as N? [see Eq. (20)]. We have gone
up to N = 3000 on a simple workstation for the two-
dimensional simulations. In three dimensions, the sys-
tem size studied was limited by the effort required to

N2 D

| 1 |
0 0.2 0.4 0.6 0.8 1

0.11 !

100/N

FIG. 5. The dimensionless diffusion coefficient times the
square root of the number of reptons as a function of the in-
verse of the number of reptons. The solid line is a least square
fit. Based on this figure, we expect that deviations from the
scaling law D o N?“~2 are due to finite size corrections to
scaling. However, other behaviors such as, for instance, loga-
rithmic corrections cannot be ruled out.
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FIG. 6. The dimensionless diffusion coefficient D as a func-
tion of the number of reptons N in the three-dimensional
SAFEM. The solid line is a N?*~2 curve with v = 0.586 and
the dashed line is a N ™! curve. The simulation results suggest
that the solid line provides a better fit.

keep track of the self-avoidance.
In Fig. 4 we present our data for the diffusion coeffi-
cient. It demonstrates clearly that

D x N2 =N"1/2 (25)

in two dimensions. Deviations we ascribe to 1/N correc-
tions to scaling, see Fig. 5. For three dimensions (3D)
the simulation data do not provide as strong evidence,
but as is shown in Fig. 6 there is some evidence that
the diffusion exponent u = 2v — 2 also in three dimen-
sions. A least squares fit assuming D o« N ~# produces
psp = 0.83 £ 0.06. However, finite size corrections can-
not be ruled out entirely as explanation of the deviations
from a N~! behavior.
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FIG. 7. Simulation results for the renewal time

tr = <R2> /2dD as a function of the number of reptons for
the two-dimensional SAFEM. The noninteracting fast extron
model has tgr = [/2N?*W = 0.3626/N>W (using the SAFEM
length). We conclude that self-avoidance increases the re-
newal time, yet the renewal time remains proportional to N2.
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FIG. 8. The mean square displacement as a function of
time for the two-dimensional SAFEM with N = 200 rep-
tons (solid). The dashed line is a straight line indicating the
long time behavior. The renewal time for this polymer is
tr = 3.5 x 10* W1, Clearly the diffusion coefficient has
converged to its long time value after t ~ 10° W', which
corresponds to about three renewal times.

The result presented was for the fast extron model.
This may be a good model for polymers in which the
end groups are special and determine the time scale of
the dynamics. This will be the case for only a limited
class of polymers, so the question arises to what extent
the results transfer to the repton model, which is more
physical. As pointed out above, it is very difficult to
answer this question by a direct simulation of the rep-
ton model as the amount of work needed is large by a
factor N2. Yet we believe that there are good reasons
to believe that for a physical polymer D o N2*~3, The
main uncertainty is in the scaling behavior of the renewal
time. The influence of the self-avoidance on the renewal
time is only in the prefactor of Eq. (20), which is found
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to increase by about a factor of 3 (Fig. 7). This result
suggests that while configurations may be trapped for
some time, the renewal time, being proportional to N2,
is so large that the polymer has enough time to find the
“pockets” in phase space. The mean square displace-
ment as a function of time (Fig. 8) appears to converge
rapidly to its asymptotic value, suggesting that there are
no important correlations after a few renewal times. For
the repton model, the renewal time should be even less
affected as the renewal time is larger and a larger frac-
tion of phase space is sampled, making the “holes” more
important. Assuming that the reptation model correctly
describes polymer dynamics, 4 = 3 — 2v then also is the
scaling of a physical polymer diffusing through a periodic
array of rigid obstacles.

Usually experiments are interpreted by comparing the
measured diffusion coefficient with a N ~2 power law, and
deviations are ascribed to corrections to scaling. The re-
sults presented in this paper put this interpretation into
question. As mentioned in the Introduction, the validity
of the model for physical situations is unclear. Yet there
are experiments that suggest that p < 2. The experi-
ments of Arvanitidou and Hoagland for polystyrenesul-
fonate in agarose [6] can be interpreted as evidence for a
mobility exponent ranging from 1.73 to 1.9 depending on
which of their data points are used in a fit. This at least
is compatible with the finding of this paper, u = 1.828.
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